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ABSTRACT We analyze the within- and between-
population dynamics of the distribution of the number of repeats
at multiple microsatellite DNA loci subject to stepwise mutation.
Analytical expressions for moments up to the fourth order within
a locus and the variance of between-locus variance at mutation-
drift equilibrium have been obtained. These statistics may be
used to test the appropriateness of the one-step mutation model
and to detect between-locus variation in the mutation rate.
Published data are compatible with the one-step mutation model,
although they do not reject the two-step model. Using both
multinomial sampling and diffusion approximations for the
analysis of the genetic distance introduced by Goldstein et al.
[Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L. & Feld-
man, M. W. (1995) Proc. Natl. Acad. Sci. USA 92, 6723-6727], we
show that this distance follows a »? distribution with degrees of
freedom equal to the number of loci when there is no variation
in mutation rates among the loci. In the presence of such
variation, the variance of the distance is obtained. We conclude
that the number of microsatellite loci required for the construc-
tion of phylogenetic trees with reliable branch lengths may be
several hundred. Also, mutations that change repeat scores by
several units, even though extremely rare, may dramatically
influence estimates of population parameters.

1. Introduction

Microsatellite DNA is a special class of tandem repeat loci that
involves a base motif of 1-6 bp repeated up to ~100 times (1).
Microsatellite loci are extremely polymorphic, with up to
dozens of alleles at each locus and mutation rates as high as
1073 (2, 3) or 107* (4, 5), and for these reasons, they are
appropriate for use in molecular taxonomy, evolution, and
population genetics (6). In population and evolutionary ge-
netics, microsatellites are powerful because, besides the fre-
quencies of the alleles, the repeat score for an allele may be
viewed as a quantitative trait. This approach is reminiscent of
quantitative genetics and already has been used to estimate the
central moments of the number of repeats in human popula-
tions (7) and to evaluate genetic distances between popula-
tions (8, 9) and the corresponding F statistics (10). Except for
these studies and earlier basic work in which the population
distribution of allele sizes and their second moments under the
one-step mutation model and random drift was analyzed (11,
12), little has been published about higher order moments. We
study here the between-locus variation, in particular the
distribution of the distances, including central moments of up
to the fourth order.

2. Within-Population Variability

2.1. Mutation. Consider a mutation process operating on
repeat numbers under which each allele may mutate to any
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other allele. Let ¢ = j — i be the change in repeat number due
to mutation of the allele that carries j repeats to the allele with
i repeats; ¢ < 0 if it decreases, ¢ > 0 if it increases. We assume
that the probability, v., of a mutational change by c in the
number of repeats does not depend on the allele mutated. The
total mutation rate is v = Z..o v.. Hereafter, we assume that
mutation is not directional, in the sense that the mean change
in repeat numbers among newly arisen mutations is zero; v=
e vee = 0.

The one- and two-step stepwise mutation models were
generalized (10) by introducing the value va2, where o2 is the
variance of changes in repeats among the new mutations. For
simplicity we denote it by the symbol w;

w= ZVCCZ

c

= Va2,

The one-step stepwise mutation scheme (studied in refs. 8-12)
is a special case of this mutation model, with w = v. If there
are mutational events that change repeat numbers by two or
more, then w > v. For example, for the two-step model, w =
v + 3(v2 + v_3), and for the three-step model, w = v + 3(v2
+v_oy) + 8(V3 + V_3).

It also is useful to introduce the skewness and kurtosis of the
mutation process, which we denote respectively by s = =, v.c3,
and k = 3, v.c*, assuming that v = 0. Note that k = w for the
one-step mutation scheme, otherwise k > w. In particular, k =
w + 12(v, + v_,) for the two-step model, and k = w + 12(v;
+ v_3) + 72(v3 + v_3) for the three-step model.

2.2. Population Parameters. At time ¢, let p; be the fre-
quency of allele A4; that carries i repeats. Following refs. 8 and
9, we may analyze the variation at this locus as a quantitative
trait, the number of repeats. To this end, introduce the first
four central sample moments of the allele frequency distribu-
tion {p;}—namely, the mean of repeat numbers , the variance
V, the skewness S, and the kurtosis K:

r=>ip; V= Zpi(i -3
i

i

S=2pli—r’, K=2Xpl-nt [
] 1]
Note that the expected squared difference between the scores
of two alleles randomly drawn from the population is 2V
Following mutation, the expected frequency of allele A;
changes to p;,

pi = Z Vi—cPe- [2]

It follows from Egs. 1 and 2 that, among gametes produced by
the parental generation, the first four central moments of the
distribution {p;} are

F=r,V=w+V,S§=s+S,K=k+K+6wV. [3]

2.3. Mutation-Gene Drift Equilibrium. The progeny gen-
eration comprises N haploid individuals (gametes) randomly
chosen from among those produced by the parents, with
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frequencies p; from Eq. 2. Following ref. 12, this multinomial
sampling procedure reduces ¥ by the factor 1 — 1/N. There-
fore, the expectation of the mean and variance of repeat
numbers (see Eq. 1) in the progeny generation, r' and V'
respectively, must satisfy

8m{r’} =r, 8m{V’} = (1 - ;\l_,)(V + W)’ [4]

where €, denotes the expectation operator with respect to
multinomial sampling, and the primes refer to the allele
frequency distribution at time ¢ + 1.

From Eq. 4, taking the expectation with respect to the initial
generation and iterating, we see that ultimately the expected
population variance approaches its mutation-drift equilibrium,

V=8EW}=(N- 1w, (5]

where ¢ is the expectation operator with respect to the initial
generation (9, 10, 12). We use the circumflexes (“hats”) to
label expected values at equilibrium.

Hereafter, we assume that w, s, and k are of the order of 1/N,
with { = (N — 1)s and k = (N — 1)k.

For the skewness and kurtosis of the allele frequencies
distribution, from Eqgs. 3 and 4 and equations 27.4.2 and 27.5.1
of ref. 13, we have

PROPOSITION 1. Among progeny

3
En{S'}= (1 - ﬁ) (S +5s),
1 .
En{KI=K+ N (—4K + 6VV + k + 6V?), [6]

1 .
En{VY=Vi+ N (K —3V2+2VV),
neglecting terms 0 (N~2).
Expressions for the central moments of the mean number of

repeats expected among progeny follow from the moments of
the mean value (ref. 13, p. 345):

Enfr}=rEnlr -1 = %,(w +V), Ex{(r — 1%

2

1 3
= 6+ S Eul’ =0 =Tz +ONY. 7]

From Egq. 6, taking expectations as for Eq. 5, we obtain
equilibria for the skewness, kurtosis, and variance of variances,

Var {V'} = E{V'?} — 1%, in the population which we state as
RESULT 1. The expected values of the central moments in a
population at mutation-drift equilibrium are:

= (N - 1w Var{V} ~ <4V2 2)

§~ § K~592+ (8]

NIK

The value of k may significantly exceed ¥ and thus influence

the expected values of \ar{V} and K if the mutation process
allows multiple steps. It follows from the definition that

2 fuc*
E fic®’

[9]
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where fi, f, f3, ... are the fractions of new mutations that
change the number of repeats by *1, +2, +3, etc., with = f.
= 1. Obviously, f, = v./v. Formulae similar to those of Result

1 for ¥ and Var{V'} have been independently derived (14) by
using a coalescence argument with additional assumptions on
the mutation probabilities.

2.4. Multiple Loci. Let p; be the frequency of a gamete
carrying i repeats at one locus and j repeats at a second, with
pi. and p; the corresponding marginal (allele) frequencies at

these loci:
pi.= EP[,', Pj= IEP:}
J

Suppose that mutations at different loci arise independently,
so that the mutation process may be described in terms of v,
and v, , the rates of mutation that change the repeat numbers
by c at locus 1 and locus 2, respectively. The expected gamete
frequencies are

Dy = Z hEpchvl,,-_cvz,j_h (after mutation),
c

p‘{j = (1 — R)p; + Rp; p.; (after recombination). [10]

Analogously to the variance in Eq. 1, define the covariance
between these loci with respect to the number of repeats in the
parental generation as:

Ciz= 2 2 —r)
i

where r; and r; are the means at loci 1 and 2, respectively. Also
define the covariance Cj, after mutation and recombination
but before sampling by the same Eq. 11 in which p; are
replaced by pj. It follows from Eqs. 10 and 11 that Cj, = (1 —
R)Cy,. Now, as before, let the “prime” denote the progeny
generation, and €, be the expectation in this generation with
respect to a multinomial sample of size N from the gamete
frequencies pj; (see Eq. 10). In particular, En{pj} = pj;. Then
we can prove that £€,{Ci2} = (1 — R)(1 — 1/N)C12, so that
E{C12} is zero at mutation-drift equilibrium:

PROPOSITION 2. The mean repeat numbers at different loci are
not correlated with each other at mutation-drift equilibrium.

It can also be proved that the variances at these loci, V| =
(i — r)’pi and V2 = Z(j — r2)’pj, have negligible cor-
relation at mutation-drift equilibrium: E{VV>} — Vw, =
O(N~1), where V; = E{V1} = (N — Dwy, Vo = E(Va} = (N
— 1)w;, are the variances for these two loci at equilibrium. We
conjecture that this covariance is actually O(N~2). Therefore,
correlation among variances of repeat numbers at different
microsatellite loci can be ignored in the statistical analysis.
Thus if V1, V>, ..., Vi are variances at L microsatellite loci
calculated according to Eq. 1, with mean V' = ZV,/L, we
may consider the between-locus variance of the variances,

— r2)py, (11]

—~ 1 [& _
Var, {V} = m[lzll/f - LVZ], [12]

as an estimate of the expected value Var{}'} and obtain

_RESULT 2. In a population at mutation-drift equilibrium,
Var{V} given in Eq. 8 provides the predicted variance of
repeat-score variances across loci, Var {V}, if the mutation rates
do not vary among the loci.

3. Genetic Distance Between Populations

3.1. Single Locus. In this section, let rx, ry, and Vx, Vy be
the means and variances of the repeat scores at one locus in
two genetically isolated populations labeled by X and Y. In ref.
9, the quantity (rx — ry)? was denoted by (8i)? and used as a
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distance between two populations. In the analysis here, for
notational ease, we use the symbol A for this distance and call
it the “squared mean difference” (SMD),

SMD:A = (rx — ry)% [13]

The new notation is more convenient for the study of higher
moments. From Eq. 7 we immediately obtain the expected
value of A’, the distance between these populations in the
progeny generation (after mutation and multinomial sam-

pling):
1 1
EnfA'}=A+ IT/(VX +w) + N(VY +w). [14]

Suppose that both populations were derived from a single
ancestral population of size N that was at mutation-drift
equilibrium and let these populations also be of size N and at
the same equilibrium. Then, from Egs. 5 and 14, we obtain

EniA’} = A+ 2w, [15]

so that E{A} = 2wr, where, as before, € refers to expectation
with respect to the initial generation (9, 15). Further,
Varp{A'} = E,{A"?} — (Em{A’})% Decomposing (rk — ry)*
and using Eq. 7, we can show that £,{A"?} ~ A? + 12wA +
20w? + k/N, and, using Eq. 15, obtain a formula for the
variance of the distance given that in the previous generation,

k
Var,{A'} = 8wA + 16w? + N~ 8wA + O(N72). [16]

To find the distribution of genetic distances after ¢ genera-
tions, we neglect terms of the order of N~2 and use a diffusion
approach (ref. 16, pp. 177-179). Under the assumption that Nw
— B as N — «, we may approximate the discrete changes in A
by a diffusion process with the infinitesimal parameters u =
2B, the drift coefficient; and o*(A) = 8BA, the variance
coefficient; and time 7 = ¢/N, where t is the real time in
generations. Since [A' — A| = |[(rk — rx) — (rY — rv)] [Pk +
rx) — (ry + ry)]| < const |(rk — rx) — (rY¥ — ry)| on some finite
interval of A, and since the fourth central moment of r’ is
O(N~2) (Eq. 7), NE{(A’ — A)*} approaches zero as N in-
creases. Therefore, this process satisfies the Dynkin condition
and is a diffusion (ref. 16, p. 165). The corresponding transition
probability density function p(A|7N, x) satisfies the Kolmog-
orov backward differential equation

o_1, 7 p &P 17
a7~ 27 Wz T hy (7
where p(A|7N, x) is the probability density of the distance A at
time t = 7N given A = x at¢ = 0. The transformation A = 28y?
transforms the standard Brownian process, described by the
heat equation dp/at = (1/2) 9%p/dy?, to Eq. 17 (ref. 16, p. 173).
Since the Brownian motion process gives rise to the Gaussian
distribution (e.g., ref. 16, p. 217), this transformation produces
a solution in terms of natural time, ¢ (in generations), and the
mutation parameter, w. In fact, we have

PROPOSITION 3. Let two independent populations have the
distance between them Ay = (tx — ty)? at the initial time t = 0,
and be at mutation-drift equilibrium. Then the probability density
function of the distance A between them after t generations is

_ 2
! p{—(\/Z ‘/A_")}. [18]

1
B awt

The following consequence of Proposition 3 is useful for
application:

p(A[t,Ag) =
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RESULT 3. Suppose that two populations split from an ances-
tral population at mutation-drift equilibrium and remain at this
equilibrium. Then, after t generations of independent evolution,
A/2wt has a x? distribution with 1 degree of freedom.

A related result, that rx — ry is normally distributed with
variance 2wt, has been obtained independently (15).

Define the variance of the distance with respect to the initial
generation: Var{A} = E{A?} — [E{A}]~

COROLLARY 1. Under these conditions, the expected distance,
E{A}, and its variance, Var{A} E{[A — 2wt]*}, after t
generations are

E{A} = wt, Var{A} = 8w?t2. [19]

This result for the mean in Eq. 19 has been obtained (9) for the
one-step mutation model.

Note. Proposition 3, and therefore Result 3, hold if the
population size is sufficiently large that the diffusion provides
a good approximation to the discrete time dynamic for A (16).
This may require a population of several hundred individuals.
Nevertheless, Eq. 19 is valid for any N and can be derived
directly from Egs. 15 and 16, with Var{A} = 8w%? + (8w? +
k/N)t, which can be approximated by 8w?? after sufficient
time.

3.2. Arbitrary Number of Loci. The theory given above may
be extended to include multiple microsatellite loci. Consider L
microsatellite loci, with mutation rates vy, v, ..., v, and
weighted mutation rates wy, wy, ..., w, whose mean and
variance are denoted by

1L 1
L= Ll

MP

wi — w2, [20]

Let Ay, Ay, ..., AL be SMD distances between two popu-
lations for these loci. It can be proved that for any m # [,
NE{(Af — A)(An — An)} approaches zero as N increases.
Hence, we may write the backward Kolmogorov equation for
the multidimensional distribution of the distances, p(Ay, ...,

Arlt, x1, . . ., x), with the initial conditions xy, . . ., x, and no
covariance terms (ref. 17, p. 332) as:
S [21]
o "1_2] alax, I_E I-'~1
where
w = 2B, of = 8B, [22]

This equation has a solution that is the product of marginal
probability densities,

p(+) = pi(Ailt, Ao)p2(Aslt, Agy) . . . pL(ALlt, Agr), [23]

each of which takes the form of Eq. 18 with w and Aq replaced
by w; and Aq, respectively, where A is the initial distance
between these populations at locus / at time ¢ = 0. Thus, we
have

PROPOSITION 4. At mutation-drift equilibrium, the SMD dis-
tances at microsatellite loci are weakly correlated with each other,
and the distribution of each takes the form in Eq. 18. In
particular, if at t = 0 the populations separated from an ancestral
population at equilibrium, then each ratio A\/2wit follows the x?
distribution with 1 degree of freedom.

Define the total distance between two populations as the
sum of the single-locus distances,

L
A= DA, [24]
=1

From Proposition 4 and the additivity of x2, we immediately
obtain
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RESULT 4. Suppose that two populations are descended from
a common ancestor at mutation-drift equilibrium t generations
ago. If the mutation rates are the same for all loci, then A/2wt
approximately follows the x? distribution with L degrees of
freedom.

We emphasize that even if mutation rates differ among loci,
from Proposition 4 or from Proposition 2 with Corollary 1, we
have

COROLLARY 2. The expected total distance (Eq. 24) between
populations t generations after they split and its variance at
mutation-drift equilibrium are ‘

E{A} = 2Lwt, Var{A} =~ 8L(W*+ a2 )t2. [25]
4. Discussion

We have provided here an analytical approach that uses both
multinomial sampling and a diffusion approximation to obtain
analytical formulas for the variance, kurtosis, genetic distance,
etc., that confirm the results of the simulation study for the
one- and two-step mutation models (table 1 of ref. 7) that used
the coalescent process.

Consider the data on 86 microsatellite loci in humans listed
in table 4 of ref. 7. [These data were taken from Centre
d’Etude du Polymorphisme Humain (Paris) families and so
cannot really be considered to represent an isolated randomly
mating population of constant size.] Here, the variance of
allele sizes, averaged over the loci, was V ~ 4.88. Taking this
value as the equilibrium variance 1/, we can use Results 1 and
2 to calculate the expected values of the variance of within-
locus variances and the kurtosis. Assuming the one-step mu-
tation model with equal mutation rates at the loci, for which
k =V(fi = 1andf. = 0 for all ¢ > 1, in Eq. 9), these values

are Var{V} ~ 32.6 and K ~ 121.5, which should be compared
to the values estimated from data, namely Var; {}'} ~ 31.8 and
the mean of the kurtosis estimates across the loci, K = =;/L ~
125.2, respectively. Such close correspondence between data
and theoretical estimates is rare in statistical applications of
this kind. It confirms the previous conclusions that the one-
step model satisfactorily describes these data and analogous
conclusions of refs. 7 and 18. This does not mean, however, that
other models are rejected by these data. For instance, if we
assume a two-step model with 90% one-step and 10% two-step
mutations (f; = 0.9,f, = 0.1, so that k = 1.92V; see Eq.9), then

Var{V’} and K from Eq. 8 become 33.4 and 123.7, respectively,
which are still close to the estimated values. Therefore, such a
two-step mutation process is not excluded by this analysis;
many models may be compatible with these data.

We emphasize that the term «, which characterizes the
fourth central moment for the number of repeats among new
mutations, may contribute to the estimates of the population
parameters. Even very rare multiple-step mutations may dra-
matically increase the within-locus kurtosis, K, and the be-
tween-locus variance of variances in repeat numbers, Var, {V'}.
For instance, suppose all new mutations change the repeat
numbers by 1 except for a fraction 0.0001, which changes
repeat scores by 10 (fi = 0.9999, fio = 0.0001, in terms of Eq.
9). Then k ~ 96V. Thus, the statistics Var(}’) and the kurtosis
K may be particularly useful in helping to distinguish the
one-step from multiple-step models. Indeed, from Result 1, the
greater the fraction of mutations that change allele sizes by 2
or more repeats, the bigger is k and thus the bigger is the
kurtosis and also the between-locus variance of variances. Of
course, an appropriate statistical procedure is needed for more
formal inferences.

In the above discussion, we have concentrated on the
squared mean difference, (8u)? [in the analysis above we use
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the symbol A for (8w)?]. We have found that this distance
follows a y*-distribution with L degrees of freedom, if it is
based on L microsatellite loci and if the mutation rates do not
vary among microsatellite loci. With heterogeneity in the
mutation rates, we have obtained Eq. 25 for its variance. Using
Corollary 2 of Result 4, we can estimate how many loci are
required for reliable estimates of the divergence time and
thus for the construction of phylogenetic trees. Indeed, let ¢ be
the actual time passed after two populations split, (8ix)? be the
estimate of genetic distance between these populations,
and t be the estimate of the divergence time. From Eq. 25,7 =
(8)?/2Lw, where w is the average of w values. It follows from
Eq. 25 that the standard deviation of the estimated time 7 is
tV'2/L, which increases linearly with time, so that the earlier
diverged taxa are estimated with a greater absolute error. The
relative error in the estimate of the divergence time between
two taxa, calculated as the ratio of the standard deviation of
the estimated time and the real divergence time, V' Var{t}/t,
does not depend on time and is just V2/L. Thus, to produce
a relative error of 10% requires 200 loci. Therefore, reliable
estimates of divergence time and the branch lengths in phy-
logenetic trees involving many taxa may require several hun-
dred loci. Such a conclusion does not appear to be a specific
property of microsatellite data and applies to other distances.
This may contribute to frequent failure to predict time of
divergence obtained from molecular data (ref. 19, pp. 508-
514).
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analysis of the assumptions involved in our treatment. These com-
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